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Small-scale random fluctuations of atmospheric variables are ubiquitous dynamical
components in the stable, free atmosphere. There, within the O(1–10 m) vertical wave-
length band, spectra of temperature and horizontal velocity often follow either a m−5/3

or a m−3 power law, m being the vertical wavenumber. Using high-resolution vertical
profiles obtained by balloon-born instrumentation in the troposphere and strato-
sphere, we determine experimental probability density functions (PDFs) of velocity
and temperature fluctuations in the spectral band (2–20 m) within atmospheric layers
which follow one or the other spectral law. PDFs of such band-filtered fluctuations
of temperature and velocities (horizontal and vertical) are estimated within 101 seem-
ingly homogeneous atmospheric layers. It appears that PDFs of horizontal velocity
fluctuations, once normalized by their r.m.s. values, do collapse towards two signifi-
cantly different regimes depending upon the spectral law followed in the wavelength
band considered. On the other hand, temperature fluctuation PDFs are shown to be
close to each other in both regimes. All these PDFs show close-to-exponential tails.
Their high kurtosis appears to be mainly related to intermittency of the fluctuations
fields, though marginal influence of residual inhomogeneity of the selected layers may
be suspected. These results are compared with published results of laboratory and
numerical experiments. We wish to emphasize the unexpected non-Gaussian character
of these PDFs.

1. Introduction
The study of the probability density functions (PDFs) of fluctuations in turbulence

has received a renewed interest in the last few years, from a theoretical (Pope 1985,
1994; Sinai & Yakhot 1989; Yakhot 1989; Ching 1993, 1996), numerical (Vincent &
Meneguzzi 1991; Métais & Lesieur 1992; Jaberi et al. 1996; Ching & Tsang 1997)
and experimental point of view. This interest is related to the intense research on
intermittency of turbulent signals, which may be demonstrated by the shape of
PDFs (Frisch 1995). Many of the experimental studies (Castaing, Gagne & Hopfinger
1990; Gollub et al. 1991; Jayesh & Warhaft 1991, 1992; Guilkey et al. 1997) deal
with laboratory measurements, where temperature can be considered as a passive
scalar. However, Castaing et al. (1989) published PDFs of temperature in a convective
medium, this question being also adressed by Van Atta & Park (1972) in the planetary
boundary layer. More recently, Thoroddsen & Van Atta (1992) published PDFs
obtained in a strongly stratified wind tunnel. Results obtained in the planetary
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boundary layer have already been published by Katul (1994), but limited to neutral
or slightly-stratified flows.

We present below estimations of the PDFs of temperature and velocity small-scale
fluctuations in the stable, clear, free atmosphere above the planetary boundary layer
and up to the stratosphere. There, temperature is not a passive tracer and it may be
shown that temperature fluctuations correspond to available potential energy (EP )
reservoirs, as pointed out by Phillips (1967). Energy exchanges between kinetic energy
(EK) and EP reservoirs are expected to occur at all scales. Thus, specific connections
between temperature and velocity fluctuations may be anticipated, with, possibly,
some influence upon their respective PDFs.

Vertical profiles of temperature and velocities in the stable, free atmosphere usually
show a sequence of layers with more or less intense small-scale activity. Assuming
statistical homogeneity of small-scale fluctuations within definite layers, spectra of
temperature, and horizontal and vertical velocities may be estimated. Within strong
signal amplitude regions, these spectra often scale like m−5/3 in the short-wavelength
band, typically O(1–10 m), m being the vertical wavenumber, thus suggesting a close-
to-inertial subrange, à la Kolmogorov. Somewhat less known is the fact that within
calm (non-turbulent) layers the same spectra in the same spectral band often scale
like m−3 down to the instrumental noise level (Sidi & Dalaudier 1989; Dalaudier
et al. 1994a), except for the vertical velocity ones, which grow much slower towards
larger scales. This spectral m−3 behaviour has been extensively studied since the
sixties, and is usually associated with the presence of a stable vertical gradient of
temperature. It is hence called the ‘buoyancy subrange’ (Lumley 1964; Phillips 1967).
These two power laws are by far the most frequently encountered, and thus suggest
that small-scale fluctuations mainly result from different dynamical regimes, termed
hereafter ‘turbulent’ and ‘calm’. Note that some layers (' 20% of the analysed set)
show a quite different spectral behaviour, with slopes ranging from −1 to −4 or with
different slopes for the temperature and horizontal velocity spectra. The available data
relative to these atypical situations are not sufficient to document them accurately.
Therefore the analysis hereafter only refers to those layers such that both temperature
and horizontal velocity spectra scale like m−5/3 or m−3.

PDFs are primary characteristics of fluctuating fields. Their study may give hints
about some basic mechanisms, such as the intermittency, and help delineate differences
between the two regimes. Thus, our main aim is to characterize and compare PDFs
of atmospheric variables, estimated within layers showing either a m−5/3 or a m−3

spectral power law at short vertical wavelengths, using vertical profiles measured in
the atmosphere by balloon-born instrumentation. To compare the distributions, we
use the Kolmogorov–Smirnov (KS) test. The basics of KS test and some discussion
about its application in the present context may be found in the appendix. The
atmospheric data used in this paper will be briefly presented in the next section.
They have been obtained during four stratospheric balloons flights, during a field
experiment called RASCIBA, held in 1990, and devoted to radar and scintillometer
signals physics (Dalaudier et al. 1994b; Luce et al. 1995). We then present the layer
selection process which mainly relies on detection of velocity small-scale activities. It
includes the following steps: (i) detection of data sections with a minimum length
around 200 m showing intense or weak activities within the velocity first difference
profiles; (ii) delimitation of subsections with a nearly constant temperature gradient,
in order to control the influence of stratification; (iii) check of the consistency of
the temperature and velocity spectra; (iv) inspection of the apparent homogeneity
of the filtered fluctuations profiles. One hundred and one calm or turbulent layers
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have been delineated following these steps. The main dynamical characteristics of
the two regimes are shown by estimating, within each layer, the gradient Richardson
number Ri, the Thorpe length (Thorpe 1977) L

T
, which may be considered as an index

of overturnings, and the fluctuation variances. Briefly, turbulent (calm) layers have
weaker (larger) Ri, significative (negligible) L

T
, and close-to-isotropic (anisotropic)

velocity fluctuations. Within turbulent layers, we also computed kinetic and available
potential energy dissipation rates and the Lumley–Shur–Ozmidov scales as well. PDFs
of normalized velocities and temperature fluctuations within these layers are then
estimated and compared, using the Kolmogorov–Smirnov test. Horizontal velocity
PDFs appear to collapse towards two significantly different ones depending upon the
dynamical regime of the layer. On the other hand, normalized temperature fluctuation
PDFs always appear very close to each other, whatever the dynamical regime. While
turbulent vertical velocity PDFs also nearly collapse towards a single PDF, nearly
identical to the turbulent horizontal velocity PDF, less distinct results are obtained
for vertical velocities within calm layers. All these estimated PDFs are clearly non-
Gaussian and show close to exponential long-extended tails. In the last section, we first
discuss the main experimental uncertainties and show that they cannot qualitatively
influence the PDF estimations. Since the high kurtosis and its increase with decreasing
spatial scale of the turbulence are usually associated with intermittency (Yakhot 1989;
Frisch 1995, p. 122), we test if these results are actually related to that phenomenon,
or due to residual inhomogeneity of the selected layers. We show, using a heuristic
argument, that inhomogeneity cannot account for all the high kurtosis observed.
Then, we underline similarities and differences of the present results to those obtained
by numerical simulations and laboratory experiments. We emphasize the close-to-
exponential tails that we have observed, while stratified fluids numerical simulations
(Métais & Lesieur 1992) and laboratory experiments (Thoroddsen & Van Atta 1992)
show Gaussian tails. A tentative explanation relying upon the relative position of the
spectral band considered with respect to the sources scale is suggested.

2. The data set
2.1. Measurements and data processing

The data discussed here have been obtained by balloon-born instrumented gondolas
during the RASCIBA field experiment (Dalaudier et al. 1994b; Luce et al. 1995).
Measurements were made aboard upwind-oriented gondolas, hung nearly 180 m
below stratospheric balloons. The data have been obtained during four balloons
ascents up to their ceilings (22–27 km) and during two descending parts of these
flights, down to the tropopause. These flights are listed in table 1. The lower altitudes
considered during the ascents correspond to the cloud upper limits. These flights
occurred at night, passing through quite different meso- and synoptic-scale dynamical
conditions: strong internal gravity wave activity during flights 14 and 15, extremely
calm atmosphere during flight 16, strong tropopause jet during flight 19.

Instrumentation included fast-response cold-wire thermometers, a two-axis ionic
anemometer (vertical and horizontal), a magnetometer, and a high-precision barome-
ter, following the so-called ‘differential sounding’ methodology (Barat 1982). A brief
sketch of the gondola is presented in figure 1. Some discussion about the significance
of the upwind-oriented anemometry may be useful at this point. Assuming that the
balloon closely follows the horizontal velocity of the air mass in which it is embedded,
the anemometer data in the horizontal direction, ∆U(z), when combined with the
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Flight reference Type Date Altitude range (km)

14A Ascent 19 Feb. 1990 5–25
15A Ascent 20 Feb. 1990 3–25
15D Descent 20 Feb. 1990 22–13
16A Ascent 21 Feb. 1990 4–21
16D Descent 22 Feb. 1990 21–12
19A Ascent 1 Mar. 1990 4–25

Table 1. Balloon flights references.
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Figure 1. Sketch of the gondola. The dimension of the vane is around 1 m2.

magnetometer data, give the relative horizontal velocity, ∆U (z) = U (z) − U (z + h),
where h is the balloon–gondola distance and U the air horizontal velocity. Within
a factor h, these anemometer data may be interpreted as an estimation of the local
shear, S at the altitude z + h/2, using

S(z + h/2) =
1

h
∆U(z). (2.1)

It may be shown that the high-frequency content of these relative velocities only refers
to the velocity fluctuations at the gondola level, as a result of the smoothing effects
of both the large size (O(20 m)) and the inertia of the stratospheric balloon (Barat
1982). Thus, the fluctuations of the anemometric signal, U ′(z), are the projections of
the horizontal velocity fluctuations on the direction of the horizontal velocity shear
at the altitude z + h/2.

The sampling rate (32 Hz) allows vertical resolutions ranging from about 10 cm to
20 cm, depending upon the balloon vertical velocity. This resolution and the sensor
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sizes (a few cm) are well above the dissipation scales. Notice that, as a result of
the balloon vertical velocity (about 6 m s−1 during the ascents, about 3 m s−1 during
the descents), and the varying relative wind modulus and orientation at the gondola
level (0–6 m s−1), measurements are made along complex helical pathes with respect
to the flow. We neglect this aspect and consider data resampled at equispaced vertical
distances (0.2 m during the ascents, and 0.1 m during the descents). This approximation
will be discussed in the last section. The velocity of gondolas with respect to the flow
being much larger than the typical velocity fluctuations considered here, we apply
the Taylor frozen-field hypothesis. Further details about the instrumentation may be
found in Dalaudier et al. (1994b) and references therein.

Hereafter, the small-scale fluctuations we consider will be band-filtered data in
the vertical wavelength band (2–20 m). We consider band-filtered data instead of
increments in order to avoid contamination of small-scale fluctuation statistics by
mesoscale vertical shears. This contamination results from two unavoidable charac-
teristics of the atmospheric dynamics, i.e. (i) there is no scale separation between
small and mesoscale dynamical components; (ii) the mesoscale energy spectra in the
free troposphere and stratosphere scale like m−3 up to wavelengths of O(103 m), see
e.g. Smith, Fritts & VanZandt (1987), Sidi et al. (1988). Consequently, short vertical
distance increments are always significantly influenced by varying mesoscale vertical
shears.

The wavelength band has been chosen in such a way that it allows statistical
properties of the two dynamical regimes (with a m−5/3 or m−3 spectrum) to be
compared in the same wavelength band. The shorter wavelength limit (2 m) was
chosen to minimize noise contributions to the fluctuations statistics. The larger one
(20 m) results from an experimental fact: m−5/3 spectra, when present in stratospheric
data, are scarcely observed at wavelengths larger than 20 m. Then, temperature and
horizontal velocity spectra grow steeper towards the mesoscale range, following the
m−3 scaling. Moreover, the transition between these spectral domains occurs close to
the Lumley–Shur–Ozmidov scale (Lb= 2π(ε/N3)1/2, ε is the dissipation rate, N is the
Brunt–Väisälä frequency). In the stratosphere, Lb is of the order 20 m within turbulent
layers, and much larger in the troposphere (Hocking 1985 and the present article).

Thus, starting from the original time recordings, data processing includes the
following successive steps:

(i) data resampling at equally spaced vertical distances (cubic-spline interpola-
tion);

(ii) withdrawal of a broken-line rough trend (to remove most of the low-
wavenumber components, see Frankignoul 1974 or Press et al. 1994, p. 552);

(iii) filtering using classical band-pass FIR filters (Rabiner & Gold 1975);
(iv) undersampling of the resulting series in accordance with the new high-

wavenumber cut-off: one sample per metre.

2.2. Selection of layers

We present in figures 2 and 3 series of temperature T and anemometric signals
∆U, together with zooms at different scales. Also plotted are the profiles of first
differences δT and δU, which helps delineate more clearly the limits of every layer.
The selection of the data sections considered in § 3 proceeds as follows. First, a
careful scrutiny of all the available data profiles allows one to eliminate a lot of short
data subsections suspected to be contaminated by instrumental wakes (wakes of the
balloon, or even of the gondola itself, in some cases of misalignements of the gondola
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with the relative wind). While these data subsections only represent a few percent
of the whole data set, they reduce somewhat the number of large, calm or turbulent
layers available.

Then, using visual inspection of profiles of U ′, W ′, δU and δW , we delineate
areas showing turbulent activity, clearly distinguishable from their surroundings,
and areas with no turbulent activity. We emphasize that we consider here only
the velocity fluctuation profiles. We chose this rule because turbulence, within the
present data set, seemingly originates from some kind of dynamical instability.
Estimations of the Thorpe lengths (see below) show that overturnings only occur
at small, turbulent scales. Furthermore the sensitivity of T ′ fluctuation intensity to
local variations of dT/dz prevents T ′ profiles being used as reliable evidence of
turbulence.

We can show (see the Appendix) that to have enough information to compute
reliable statistical parameters of fluctuations in the wavelengths 2–20 m such as the
PDFs, the depth of a layer should at least be around 200 m. Hereafter, we will
hence consider only such layers, with the exception of a few thiner ones, as explained
below. Note that many turbulent layers thinner than 200 m have been observed in
the atmosphere, as already described (Barat 1982; Sato & Woodman 1982). We just
cannot estimate statistically significant parameters from such thin layers, and have
hence not included them in our study. Each selected layer is then restricted to (or
split into) narrower one(s) with a nearly constant mean temperature gradient. The
choice of constant temperature gradient layers is made to allow some ‘control’ over
the stratification parameter which is of great importance in any stably stratified fluid.
Obviously this procedure narrows the layers, as compared with the ones resulting from
the inspection solely of velocity profiles. The few thinner layers retained correspond
to subsections with constant temperature gradients within seemingly homogeneous
layers.

These key steps leading to the selection of definite layers allow for apparent
intermittency of the turbulent signal, for instance the occurrence of narrow, calm
subsections within an otherwise strong amplitude section. Clearly, a visual exami-
nation cannot distinguish between intermittency of turbulence and narrow (depths
200 m) calm layers interleaved with turbulent ones. Then the decision relies upon
the examination of the mesoscale gradient Richardson number Ri = N2/S2. Ri is
usually not constant within a layer, mainly as a result of the varying shear (see
figure 2). When its variations are weak enough, we consider that we observe inter-
mittency. Examples of such a situation may be found in figures 2 and 3. This
criterion, however, does not prevent wrong decisions and we must keep in mind
that some statistical inhomogeneity of the selected layers may be responsible for
some of the non-Gaussian shape of the PDF. We shall discuss this point further in
§ 5.1.

Next, we consider the spectra of U ′ and T ′ in the same data section and reject
all sections where both spectra do not show the same scaling (m−5/3 or m−3). While
turbulent sections (−5/3 slopes) within U ′ and T ′ profiles mostly correspond, such a
correspondence is not always observed within calm sections. There, some T ′ spectra
do not show any explicit spectral slope, but rather some kind of ‘deck chair’ pattern
between a m−3 scaling at larger scale and the noise level. Note that we do not test
the consistency of W ′ spectra with those of U ′: while these spectra, in the spectral
band (2–20 m), are close to the horizontal velocity ones within turbulent layers, they
may strongly differ within calm layers, showing weaker energies, thus demonstrating
anisotropy of the velocity field.
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Figure 2. Successive enlargments of temperature vertical profiles, along with the corresponding
first difference profiles (upper scales). To reduce noise contribution, the original data are low-pass
filtered down to 2 m vertical wavelengths, and undersampled accordingly (1 m). The saw-toothed
mesoscale structure of the temperature profile appears. Upper scales are the same in the three last
enlargements, showing the varying small-scale activity. Characteristics of the referenced calm (C15
and C16) or turbulent (T13 and T14) layers may be found in table 3. A spectacular example of
temperature sheets within a calm environment is shown (lower-right corner).
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Depth range (m) 150–399 400–599 600–799 800–999 > 1000 Total depth

Number of turbulent layers 32 4 1 0 1 10 830
Number of calm layers 45 14 3 1 0 20 010

Table 2. Distribution of the 101 layer depths.

3. Characterization of the layers set
We classify the layers as either turbulent or calm, according to their dynamical

regime, as revealed by the power law followed by their U ′ and T ′ spectra: turbulent
layers present a m−5/3 spectra à la Kolmogorov and calm layers a m−3 spectra. 101
layers have been selected from the data set of the RASCIBA campaign, following the
method described above, 38 turbulent and 63 calm. Table 2 displays the distribution
of the depths of layers, and tables 3 and 4 give detailed characteristics of those layers
referred to herein. A complete list of the characteristics of all 101 layers is available
from the authors or the Journal of Fluid Mechanics Editorial Office. Typical U ′ and
T ′ spectra from both regimes are shown in figure 4 (layers C16 and T18 in tables 3
and 4). We recall that, owing to the effective sensor pathes with respect to the flow,
the U ′ spectra are neither strictly transverse nor longitudinal. We emphasize that,
in both dynamical regimes, the energies found vary strongly from one layer to the
next, presumably depending upon the mean local dissipation rates and stratification
encountered.

Within each layer, we computed some pertinent dynamical parameters, namely
the Brunt–Väisälä frequency N2, a mean shear of horizontal velocity S and the
corresponding gradient Richardson number Ri = N2/S 2. Since the shear S is variable
inside each layer, Ri is computed using a mean S averaged over the layer. Figure 5
shows a scatter plot of N2 and S 2 for all the layers. Clearly, turbulent layers are
associated with weaker Ri than the calm ones. Interestingly, most calm layers also
have not particularly large Ri, thus showing that the atmosphere is on the verge
of instability. We also computed the variances within the spectral band considered,
corrected from an estimated (hypothetical) white noise level. Figure 6 shows a scatter
plot of U ′2 and W ′2. This figure demonstrates the fact that the velocity fluctuations
are close to isotropic within turbulent layers, and anisotropic within most of the calm
ones.

Then, we estimated the Thorpe length (Thorpe 1977), which is a measure of
the importance of overturnings. Here we use the fact that potential temperature is a
conservative property of the fluid particles, like the density in water. Thus, the Thorpe
length LT is estimated as the r.m.s. value of the fluid particle vertical displacements
required in order that the resulting potential temperature profile be everywhere stable
(F. Dalaudier, see Staquet & Sommeria 1996, p. 363). Figure 7 presents this length as
a function of the stratification parameter.

Within turbulent layers, we also estimated the dissipation rates of kinetic energy ε
K

and of available potential energy ε
P
, and the Lumley–Shur–Ozmidov length 2πk−1

B
,

with k
B

the buoyancy wavenumber defined as (N3/ε
K
)1/2. The two dissipation rates

were deduced from the variances corrected for the noise level using classical isotropic
formulae (Lilly et al. 1974). We took into account the effective oblique path with
respect to the flow (see § 5) and used the transverse velocity formulae to estimate ε

K
.

A selection of those characteristics are displayed in table 3. To get a rough idea of
the dynamical characteristics of both regimes, we present in table 5 the mean values
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Altitude Width N2 εK εP U ′2 W ′2 T ′2 LB LT

Ref. Flight km m s−1 × 10−2 s−2 × 10−4 Ri W kg−1 × 10−4 W kg−1 × 10−5 m2 s−2 × 10−3 m2 s−2 × 10−3 K2 × 10−4 m m

T1 14A 5.8 400 1.6 1.5 0.53 0.27 0.32 1.7 1.9 0.33 24 3.6
T13 15D 14.75 300 1.8 0.8 0.24 1.18 2.8 4.5 2.7 0.43 80 12
T14 15D 15.25 480 3.2 2.1 0.20 1.7 2 5.3 4.0 1.4 46 5
T16 15A 3.75 750 0.7 3.6 0.58 6.3 5.2 10 7.3 0.34 60 27
T18 15A 6.62 1240 1.7 0.7 0.25 3.8 4.2 7 4.6 0.6 160 23
T33 19A 7.6 570 1.1 0.50 0.42 5.9 4.17 8.2 6.9 0.26 256 19

Table 3. Physical and dynamical parameters for some of the turbulent layers.
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〈
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dz

〉
U ′2 W ′2 T ′2

Altitude Width s−1 N2 s−2 m2 s−2 m2 s−2 K2 L
T

Ref. Flight km m × 10−2 × 10−4 Ri × 10−3 × 10−3 × 10−4 m

C9 14A 21 570 1.1 5.8 4.36 1.55 0.78 3.5 0.22
C15 15D 17.7 370 2.08 2.63 0.60 0.79 0.08 0.13 1.0
C16 15D 18.2 710 2.14 5.01 1.08 0.85 0.13 0.31 0.34
C22 16A 5.35 750 0.62 1.0 2.70 0.77 0.72 0.05 2.4
C63 15A 24.25 600 3.1 5.1 0.50 3.5 0.99 0.22 0.25

Table 4. Physical and dynamical parameters for some of the calm layers.
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Figure 4. Spectra of (a) horizontal velocity and (b) temperature within typical turbulent (layer T18,
number of degrees of freedom of the spectral estimation: 31) and calm layers (layer C16, number of
degrees of freedom of the spectral estimation: 23). The spectra have been further smoothed with a
window ensuring a constant δm/m = 0.2, where m is the vertical wavenumber. Note that for clarity,
the turbulent spectra have been multiplied by a factor 5. The two dashed straight lines represent
m−3 and m−5/3 power laws.

of the parameters common to both regimes. It appears from those tables, and from
figures 5, 6, 7, that the two regimes present somewhat different mean characteristics:

(i) the turbulent regime is nearly isotropic, associated with low Ri (usually lower
than 1) and significative L

T
;

(ii) the calm regime is frequently anisotropic, associated with weak or negligible
L

T
and larger Ri than the turbulent ones.

In spite of these mean differences, the two regimes overlap in figures 5, 6, 7. This
may be interpreted as an indication of some ongoing time variations of the observed
fields: we ignore at which step of their lifecycle we are measuring turbulent layers.
In the same way, observed calm layers may be on the verge of instability: this could
explain the not so high Ri values observed. On the other hand, these layers could
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particular values of Ri (10, 1, 0.1, 0.25 dashed) have been added.

Calm layers Turbulent layers

N2 (s−2) 4.3× 10−4 2.4× 10−4

S (s−1) 0.016 0.021

Ri 2.96 0.74

L
T

(m) 1.54 9.12

U ′2 (m2 s−2) 2× 10−3 7.4× 10−3

W ′2 (m2 s−2) 1× 10−3 5.7× 10−3

T ′2 (K2) 8.5× 10−5 2× 10−4

ℵ 3.74 1.4

Table 5. Mean values of common parameters of calm and turbulent regimes.

ℵ is the anisotropy factor, defined as U ′2/U ′2.

be interpreted as the remnants of previous fully turbulent layers, according to the
so-called ‘fossil turbulence’ theory (Gibson 1991).

The estimations of the Thorpe length are also of interest. As expected, at any given
stratification parameter, turbulent layers usually show larger L

T
than calm ones.

These turbulent L
T

are, however, much smaller than the layer depths and, as may be
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Figure 6. Log-log scatter plot of the horizontal velocity variance versus the vertical velocity
variance. Variances are corrected for the noise contribution. Dashed line corresponds to isotropy.

expected, always weaker than L
B
. This implies that, even within turbulent layers, there

are not extended regions with a superadiabatic lapse rate. The vertical excursions of
fluid particles, and thus turbulent scales, are much shorter than the layer depth, and
this is a characteristic of turbulence within a stratified environment. Note that the
same characteristics are also observed in the oceanic microstructure (Moum 1996;
D. R. Caldwell, private communication 1998).

These observations, combined with those of Ri, suggest that turbulent layers mainly
result from dynamical instability of the mesoscale field. This field often showed
evidence of internal wave activity, especially during the two first flights where most
of the retained turbulent layers were observed. Notice finally that, within turbulent
layers, the mixing efficiency, ε

P
/ε

K
, lies mainly in the range 0.1–0.2, values close to

those observed in the ocean.

4. Determination of PDFs of fluctuations and dependence upon the
dynamical regime

In order to compare different layers, we now estimate within each one the PDFs
of the normalized fluctuations (i.e. fluctuations divided by their standard deviation
estimated within that layer) of T ′, W ′ and U ′. Figure 8 shows experimental PDFs
estimated within the largest calm and turbulent layers mentioned above, for these
three variables. This figure shows the high similarity between distributions of a given
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Figure 7. Scatter plot of Thorpe length LT against N2. We expect a contribution of noise to LT ,
and have estimated it with a numerical simulation of a potential temperature profile with typical
noise on temperature and pressure signals. Anomalously large LT within calm layers may result
from spurious local combinations of large noise and weaker dT/dz.

variable in each dynamical regime. It also shows that U ′ distributions differ between
the two regimes, while the T ′ distributions appear to be very similar. Notice that
while the turbulent U ′ and W ′ distributions appear similar, they apparently differ in
calm conditions, thus giving more evidence of the anisotropy of the fluctuating field.

A more rigorous account of the similarities and differencies between these PDFs
may be obtained using the KS test (see the Appendix). Comparisons of CDFs
(cumulative density functions, see the Appendix) proceed as follows: we first choose
arbitrarily one reference layer in each activity class. Then, we compare the CDFs
within these two reference layers with the corresponding CDFs within all the other
layers, using the KS test. Thus, the distribution of each variable within each layer is
characterized by two significance levels, α∗−3 (comparison with the reference calm layer)
and α∗−5/3 (comparison with the reference turbulent layer). As turbulent reference

layers, we use a 1 km wide tropospheric layer (layer T18), whilst a 700 m wide
stratospheric layer (layer C16) was used as calm regime reference layer.

Figure 9 shows for all the layers and for the three variables U ′, T ′ and W ′ the
results of these computations as a scatter plot in a reference frame (α∗−3, α

∗
−5/3). When

considering the U ′ plot, two clusters of dots emerge, strictly corresponding to the
two dynamical regimes. Indeed, all turbulent layers have α∗−5/3 greater than 0.05 and

α∗−3 lower than 0.05 while the opposite occurs for calm layers. This result shows
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Figure 8. PDFs for normalized fluctuations of U ′, T ′ and W ′ for the five largest turbulent (T1,
T14, T16, T18, T33) and five largest calm (C9, C16, C18, C22, C63) layers. Width of each bin is
0.3σ. The minimum number of occurrences per bin retained for representation is 5. The kurtosis is
presented in table 4.

that all layers in a given regime (turbulent or calm) present the same distribution of
normalized U ′ fluctuations, which differs from that in the other regime. As regards T ′
fluctuations, the plot shows that the distributions observed within nearly 90% of layers
from both regimes do not differ significantly from the two reference distributions,
as shown by the grouping of dots in the upper right quadrant. As regards W ′
fluctuations, the results are less clear: neither distinct clusters (as for U ′) nor grouping
in one quadrant (as for T ′) occur. Nevertheless, nearly 70% of turbulent layers
show distributions statistically equivalent to that of the turbulent reference layer. We
present in table 6 the kurtosis of the distributions of U ′, T ′ and W ′ for the ten
layers presented in figure 8. For those layers, the same pattern emerges as in figure 9:
U ′ turbulent and calm distributions have different kurtosis (mean values respectively
5.14 ± 0.5 and 3.4 ± 0.2), while T ′ distributions present roughly the same values
(mean values 6.9 ± 0.6 and 7 ± 0.8).
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Figure 9. α
S

distribution for (a) U ′, (b) W ′ and (c) T ′ for calm and turbulent layers represented in
a (α∗−3, α∗−5/3) reference frame (see the text for explanation). The reference layers are the same for

the three graphs (layers T18 and C16). Scales have been chosen such that dots in the upper-half of
each graph represent distributions which do not significantly differ from the turbulent reference, and
dots in the right-half distributions which do not significantly differ from the calm reference. Values
weaker than 10−4 have been changed to 10−4 for clarity, which does not change any information:
significant differences remain significant.

Layer: T1 T14 T16 T18 T33 C9 C16 C18 C22 C63

U ′ 5.5 4.9 4.8 4.7 5.8 3.3 3.1 3.6 3.6 3.4
T ′ 7.4 6.4 6.2 7.6 6.7 6.6 5.9 7.4 6.9 8.1
W ′ 4.2 6.2 4.7 5.7 4.2 4.3 8.3 4.3 3.3 3.1

Table 6. Kurtosis of the five turbulent and five calm layers displayed in figure 8.

The observed pattern of dots in figure 9 suggest that the experimental distributions
for a given parameter and regime refer to a single distribution, except for the
calm W ′. Such distributions may be estimated by considering the corresponding
set of normalized fluctuations. We use the term composite PDFs hereafter for the
experimental PDFs of such sets. These composite PDFs allow a closer analysis,
especially of the tails of the distribution, as a result of the increased amount of data
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Figure 10. Composite PDFs of normalized fluctuations for (a) U ′, (b) W ′ and (c) T ′, corresponding
to turbulent (continuous lines) and calm (dashed lines) dynamical regimes. Same representation
characteristics as in figure 8.

(10 830 for turbulent PDFs, 20 010 for calm PDFs). The calm W ′ composite PDF is
also computed, though no definite conclusions can be drawn from it.

The six composite PDFs appear in figure 10. The appearance of the composite
U ′ PDFs in a semi-log plot strongly suggests an exponential scaling for the tails of
the PDFs. The main differences between the two PDFs occur near the core of the
distribution, where the calm PDF is close to Gaussian, whilst turbulent ones remain
close to exponential. Further indication of the non-Gaussianity of those distributions
appears when considering the kurtosis of both PDFs: we obtain for the turbulent
synthetic PDF a value of 4.9 and for calm ones a value of 4.1. Recall that exact
values for a Gaussian and an exponential distribution are respectively 3 and 6.

The two composite T ′ PDFs look very much alike. Both PDFs present extended
tails that are definitely non-Gaussian. The kurtosis of turbulent and calm distributions,
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Synthetic PDF: U ′c T ′t T ′c W ′
t

U ′t 0.07 0.04 — 0.01

U ′c — — 0.09 —

T ′t — — 0.03 0.03

Table 7. Kolmogorov distances, KD, between composite CDFs of U, T and W . KD is computed
for all couples of composite PDFs. The nomenclature is as follows: Xi is the synthetic PDF of X
data (U ′, T ′ or W ′) for turbulent (i = t) or calm (i = c) layers. The choice of KD instead of α

S
is

explained in the text.

is, respectively, 6.88 and 6.9, thus suggesting an overall decrease slower than a pure
exponential distribution.

The turbulent W ′ PDF also appears close to exponential and very similar to the
correponding U ′ distribution. Its kurtosis is 4.75. As explained above, the tentative
calm W ′ PDF is only shown here without any further comment.

Comparisons between these composite distributions may be done using the Kol-
mogorov distance KD (see the Appendix). We use KD here instead of the KS test
because, as a result of the large amount of data collected in each set, the KS test sys-
tematically emphasizes the differences between the composite PDFs. Here, KD may
be considered as a proximity index between two PDFs: the weaker it is, the closer
are the two distributions we compare. Table 7 shows these KD estimates between all
the PDFs pairs referring to either the same dynamical regime or the same physical
parameter.

Again, the similarity of turbulent U ′ and W ′ PDFs is clear, which is an indicator of
approximate isotropy of the velocity field in the spectral band considered. As expected,
there is a significative difference between U ′ turbulent and calm distributions, while
both T ′ distributions appear close each other.

5. Discussion
This study has been motivated by the search for distinctive statistical properties

pertaining to the two most typical small-scale dynamical regimes observed in the clear,
free, stable atmosphere, regimes that are also observed in other environmental stably
stratified media (Holloway 1983). Though both regimes show random fluctuations
of physical variables, we distinguished them as ‘turbulent’ or ‘calm’ according to the
scalings, respectively m−5/3 or m−3, followed by the energy spectra versus vertical
wavenumber. We estimated PDFs of fluctuations, filtered in the vertical wavelengths
band (2–20 m), a spectral band influenced by one or the other dynamical regime in the
troposphere and stratosphere. This spectral band is well above the dissipative scales
and, presumably, below the source scales. Indeed, instabilities of mesoscale shears are
usually considered as the primary source of the small-scale fluctuations considered
here.

The main findings resulting from the comparisons of the PDFs of normalized
fluctuations may be summarized as follows:

(i) a single PDF shape is associated with each atmospheric variable within each
dynamical regime, except for the calm W ′ fluctuations;

(ii) calm U ′ PDFs significantly differ from the turbulent ones;
(iii) turbulent U ′ and W ′ PDFs are very close to each other;
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(iv) calm and turbulent T ′ PDFs are very similar, if not identical;
(v) all these PDFs are clearly non-Gaussian: exponential shapes for the U ′ and

W ′ PDFs tails, somewhat larger than exponential for T ′.
These findings, except for the last, do not depend upon the precise shapes of the
PDFs. Thus, they weakly depend upon possible experimental artifacts, except for the
layer selection process itself. We will below first examine the influence of identified
experimental shortcomings and then discuss these non-Gaussian PDFs.

5.1. Experimental shortcomings

The main errors are presumably linked with, (i) the effective sampling along helical
paths relative to the local air flow, (ii) possible contamination of the filtered data by
residual noise and (iii) the layer selection process itself.

Sampling occurs along helical paths as a result of the combination of the balloon
vertical velocity, Wb, and the relative horizontal velocity, ∆U , at the gondola level.
This latter has a r.m.s. modulus of about 3 m s−1 and, usually, slowly rotates with
height (negligible rotation in the troposphere and typically 360◦ within 1.0–1.5 km
altitude variations in the stratosphere). These observed twists of the helical paths
being much larger than the wavelengths we consider here, we may assume that the
effect of this rotation is negligible, at least for horizontally isotropic fields. Doing so,
combined variations of ∆U and Wb within a given atmospheric layer result in both
unequal sampling along variable oblique paths and a mean oblique sampling distance
somewhat larger than the expected vertical sampling one. It may be anticipated that
such sampling may result in an actual waveband different from the expected one.
Errors, then, depend upon the isotropy or anisotropy of the fluctuating field. For an
anisotropic field, the vertical decorrelation length is much shorter than the horizontal
one. Thus, most of the observed variability results from the vertical displacements
and most of the energy found in the actual waveband corresponds to that which
would be found in an effective vertical wavelength band (2–20 m). For an isotropic
field, we may represent the effective sampling as unequal along a mean constant
unidirectional oblique path. Then, the effect of unequal sampling is mainly the
convolution of the actual Fourier transform by some spectral window (Deeming
1975). In the present case, the expected waveband (2–20 m) is somewhat enlarged by
such a convolution. Moreover, the apparent vertical wavelength band corresponds
to an actual oblique wavelength band logarithmically shifted toward larger scales.
Thus shift is a multiplying factor of the order of (∆U2 +Wb

2)1/2/|Wb|, i.e. about 1.16
during the ascents and up to 1.5 or higher during the descents. Thus, as long as the
shifted band remains within the same dynamical regime, the resulting effect is mainly
an increased energy of the apparent fluctuations, an effect which is eliminated by the
normalization process. We must nevertheless hypothesize that PDFs of normalized
fluctuations are not influenced by these variable wavelength shifts. This hypothesis
is consistent with the very fact to compare PDFs of fluctuations within a spectral
band which, in each layer, is a varying fraction of the actual m−5/3 or m−3 domain.
Consequently, we conclude that the identification of the actual paths with their
vertical counterparts cannot introduce significant biases in the PDFs of normalized
fluctuations. As an experimental proof of the above arguments, we may quote that
similar PDFs have been obtained from measurements along paths with quite different
oblicity, during ascending or descending parts of the flights.

Instrumental noise within the waveband considered could play some role in estab-
lishing PDF shapes. If this noise has a Gaussian distribution, the convolution with
the signal distribution could account for the Gaussian pattern observed in the core of
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Figure 11. Plot of kurtosis against the largest wavelengths for different band-filtered fluctuations
of temperature and horizontal velocity within turbulent layers. The shortest wavelength is always
2 m. The increase of kurtosis when the waveband goes towards small scales is considered as a proof
of internal intermittency. Similar plots may be obtained within calm layers.

some PDFs (see the calm U ′ PDFs). Nevertheless, as stressed above, this particular
shape is obtained within layers where fluctuations show quite variable energy. We
may hence assert that the effect of noise is negligible, and cannot account for the
shape of the core of the calm U ′ PDFs.

Finally, the way we selected calm and turbulent layers might affect the PDFs.
First, temperature PDFs might be influenced by the fact that layers were mainly
selected upon inspection of U ′ profiles. We mentioned that the corresponding T ′
fluctuations appeared less homogeneous, in both dynamical regimes. This apparent
non-homogeneity in both cases could result in similar T ′ PDFs. Therefore, we
estimated T ′ PDFs within seemingly homogeneous layers as regards T ′ signal, and
obtained again the same typical shape, within apparently ‘calm’ or ‘agitated’ data
sections, thus ruling out this objection.

Finally, the layer selection procedure must be thoroughly discussed. It cannot avoid
some ambiguities. As already mentioned, it cannot distinguish narrow inhomogeneous
sublayers from actual internal intermittency. Thus, it may influence the experimental
PDF shapes. The precise extent of that influence is at present unknown, though it
may be anticipated that it tends to increase the kurtosis of the resulting experimental
PDFs. Nevertheless, to test if these calm subsections inside a turbulent layer may be
related to real intermittency or are just an artefact of the selection procedure, we
tested, for the five longest turbulent layers, the evolution of the kurtosis of the PDFs
of temperature and horizontal velocity fluctuations filtered within variable wavebands.
Owing to the nature of the original horizontal velocity signal, the evolution of kurtosis
of velocity PDFs may only be tested when considering the shortest wavebands. Results
are presented in figure 11. We see that the kurtosis increases when the spectral band
reduces towards the smallest scales, as expected for intermittent signals (Frisch 1995).

Moreover, as suggested by an anonymous reviewer, we may estimate the contribu-
tion to the kurtosis computation resulting from the presence of small calm subsections
interleaved with turbulent layers. Let P be the PDF of a layer with length L, Pt the
PDF of the turbulent part and Pc the PDF of a calm subsection of length Lc. We
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may write

P =
L− Lc
L

Pt +
Lc

L
Pc. (5.1)

Let K be the total kurtosis and Kc, Kt, σ
2
t , σ

2
c the kurtosis and variances associated

to Pc and Pt; we may write

K = Kt

1− (Lc/L)
[
1−Kcσ

4
c /Ktσ

4
t

](
1− (Lc/L)

[
1− σ2

c /σ
2
t

])2
. (5.2)

Using the reasonable hypothesis Kcσ
4
c /Ktσ

4
t � 1, we write

K = Kt

1− (Lc/L)(
1− (Lc/L)

[
1− σ2

c /σ
2
t

])2
. (5.3)

Using (5.3), we may determine if the contribution of possible calm subsections may
account for all of the non-Gaussianity. As an example, we consider the layer from
14.6 to 14.9 km shown in figure 2 (T13). A relatively quiet subsection with depth
∼ 80 m appears around 14.8 km height. Here, L = 300 m, Lc = 80 m and we assume
a variance ratio of 0.25. The estimated kurtosis of the velocity fluctuation PDF is
4.1. If we make the hypothesis that the actual kurtosis of the turbulent fluctuations
is 3, i.e. Gaussian, then (5.3) yields a corrected kurtosis equal to 3.4, different from
that measured. Hence, most of the observed kurtosis may not result only from the
(eventual) statistical inhomogeneity of the layer: it corresponds, at least in part, to real
intermittency of the field studied. Similar tests were conducted on other ambiguous
layers and yielded similar results. We should finally add that a wrong estimate of the
variance of fluctuations may lead to a biased shape of normalized fluctuation PDFs.

5.2. The non-Gaussian PDF tails

We first recall that ‘universal’ PDFs emerge for data obtained in quite different
dynamical contexts. For instance, calm layers were detected in atmospheric layers
nearly at rest and within the core of a strong westerly jet (' 50 m s−1) as well.
Similarly, calm and turbulent layers have been selected with a mean stratification
parameter N ranging from 7 × 10−3 to 3 × 410−2 rad s−1. The exponential shapes of
turbulent U ′ and W ′ PDFs are noteworthy. The typical m−5/3 scaling of the energy
spectra, along with the close-to-isotropy evidence suggest à la Kolmogorov turbulence,
i.e. that the fluctuations we consider come from a close-to-inertial subrange. Many
results published on velocity PDFs in homogeneous turbulence have yielded typical
Gaussian shapes. These results come from a broad range of laboratory experiments:
grid-generated turbulence, isotropic (since Batchelor 1953), with cross-flow scalar
gradient (Jayesh & Warhaft 1992), or even for stably stratified conditions (Thoroddsen
& Van Atta 1992). Measurements in the planetary boundary layer (Van Atta & Park
1972; Katul 1994), numerical simulation with or without stratified conditions (Vincent
& Meneguzzi 1991; Métais & Lesieur 1992) have led to similar results.

Since it is generally believed that the shape of velocity PDFs in homogeneous
turbulence is linked with the details of the generating processes (see e.g. Frisch
1995, p. 111), the typical exponential shapes observed might be related to the main
generating sources of turbulence in the stable atmosphere. Moreover, the similitude of
shapes, as discussed above, suggests that all the turbulent layers observed in a vertical
atmospheric profile result from similar generating processes. On the other hand,
exponential shapes of PDFs are frequently interpreted as a signature of intermittency
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(Yakhot 1989). One may then argue that the estimated PDFs reflect intermittency of
the band-filtered fluctuations, that band lying within a close-to-inertial subrange. This
assertion should be taken with the above discussed cautious remarks. While turbulent
velocity data suggest isotropy, the differences between calm U ′ and W ′ PDFs – and
their different energy levels as well – demonstrate anisotropy of the fluctuating field.
The fact that both calm and turbulent U ′ PDFs present exponential tails suggests
however that these tails could result from some common physical factor, that remains
to be identified.

The ‘identical’ long-tailed shape of T ′ fluctuation PDFs is an important result,
which deserves further comments. Non-Gaussian shapes of temperature fluctuation
PDFs have already been described, in many experimental or numerical set-ups: grid-
generated turbulence or pipe experiments (Gollub et al. 1991; Jayesh & Warhaft 1991,
1992; Guilkey et al. 1997), convective turbulence (Castaing et al. 1989), numerical
simulation (Métais & Lesieur 1992; Jaberi et al. 1996; Ching & Tsang 1997). The
grid-generated experiments mentioned above deal with the advection of temperature
considered as a passive scalar, i.e. without buoyancy effects. Nevertheless, all these
experiments impose a mean temperature gradient, which, in at least one experiment
(Jayesh & Warhaft 1991), is a sine qua non condition for the emergence of non-
Gaussian PDFs. For one experiment, the appearance of such shapes is linked to the
value of the Reynolds number (Gollub et al. 1991). Pipe experiments presented in
Guilkey et al. (1997) also stress the importance of a mean temperature gradient for
the existence of long-tailed PDFs. Our results seem to support this last affirmation, in
the somewhat different context of an active scalar gradient (potential temperature).

Laboratory measurements of temperature PDFs in a stably stratified turbulent
flow have been published by Thoroddsen & Van Atta (1992). These authors found
consistently Gaussian shapes. This major discrepancy could tentatively be explained
by a major difference concerning the scale range considered in the statistics. While
our results take into account only some part of a close-to-inertial subrange, it seems
that all the turbulent scales, from the largest ones down to the noise level (including
the Kolmogorov scale), are taken into account by Thoroddsen & Van Atta’s results.
Thus, the temperature fluctuation statistics they got would mainly show the statistics
of the largest scales, i.e. the ‘energy-containing eddies’, without a detectable signature
of internal intermittency. This internal intermittency does appear again in their
temperature gradient statistics which show exponential tails, since differentiation (or
differencing) enhances the contribution of the smallest scales. Similar analysis could
explain the Gaussian PDFs obtained by Katul (1994) in the planetary boundary layer.
Owing to the waveband we consider, internal intermittency appears in the fluctuation
statistics themselves, and leads to the exponential tails we observe.

Métais & Lesieur (1992) present results of numerical simulations of stratified
turbulence, where PDFs of both velocity and temperature are Gaussian, whilst they
show non-Gaussian temperature PDFs for isotropic, non-stratified, turbulence. The
authors interpreted this return to Gaussianity as the signature of the disappearance of
the large-amplitude temperature signals due to the stratification. These arguments and
others concerning non-Gaussianity of scalar PDFs in homogeneous turbulence are
discussed by Jaberi et al. (1996). These authors point out that a cautious analysis of
the physical conditions of each turbulent field is needed to propound any explanations
of the non-Gaussianity of PDFs of turbulent fluctuations. They moreover argue that
the continuous feeding of energy by the large scales seems to be a common feature
of all flows presenting non-Gaussian PDFs, whilst, if there is no influx from the large
scales, the PDFs collapse into Gaussian ones. In the present context, energy sources
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are indeed thought to dwell above the typical scales we deal with. This could then
account for the non-Gaussian shapes of the velocities PDFs we obtain, and could in
turn influence the shape of T ′ PDFs. Note finally that with the exception of the work
of Katul (1994), all those results concern turbulent flows with a thermal stratification
but without a velocity shear. This fact may too account for the discrepancies observed
with our results.

Stratification may play some role through (i) the existence of a mean potential
temperature gradient and (ii) specific effects linked to the coupling of velocities and
temperature fields via the buoyancy forces. Two arguments suggest that only point (i)
should be retained. First, T ′ PDFs apparently do not depend upon the stratification,
within the stratification range considered; notice that the same observation has
already been made by Thoroddsen & Van Atta (1992), for a quite different range of
values of N. Moreover, we obtain very similar T ′ PDFs irrespective of the dynamical
regime. This apparent decoupling between temperature and velocity distributions
is a rather surprising result, because both fields are linked through the buoyancy
term in the momentum equation (and the conversion term in the energy equation).
Such a decoupling is also present in the results of Jayesh & Warhaft (1991) and
Métais & Lesieur (1992) who present non-Gaussian temperature PDFs associated
with Gaussian velocity fields. Moreover, Ching & Tsang (1997) present numerical
results strongly indicating that the statistical properties of a passive scalar do not
depend upon the statistical properties of the velocity field. The results we present here
seem to support these views, even in the case of a conservative and active scalar.

On the other hand, the extended tails of the T ′ PDFs with respect to those of
velocity PDFs may be partly due to a particular characteristic of the temperature field
in the stable atmosphere, i.e. the existence of sheets (Dalaudier et al. 1994b). These
sheets are described as very strong positive temperature gradients, up to 0.3 K m−1,
localized on significative vertical distances, typically a few metres. They have been
observed throughout the discussed temperature profiles. Indeed, in the spectral space,
these sheets are very wide, and produce significant amplitude events, particularly
in a small-scale spectral band. Notice moreover that such relative enlargements of
T ′ PDFs with respect to velocity PDFs have been described for velocities and
temperature differences in wind-tunnel experiment (Castaing et al. 1990).

Our results have revealed that small-scale fluctuation statistics in the stable, free
atmosphere present specific features, which seemingly differ from those obtained in
laboratory measurements. They call for further research, particularly about condi-
tional means that may help to understand both the PDFs shapes and the physical
processes involved; preliminary study gives encouraging results (Alisse & Sidi 1998).
Besides their intrinsic interest, this research will also help to understand the mixing
processes which in fine remain a quite important factor for high-altitude atmospheric
chemistry.

The authors thank Professor A. S. Gurvich and Dr F. Dalaudier for fruitful
discussions, and an anonymous reviewer whose remarks improved considerably the
first version of this work.

Appendix. Minimum length of a layer and Kolmogorov–Smirnov test
Estimations of statistical quantities – here the PDFs – from measurements raise an

important question: how long must a data record be in order to get a reliable
estimation of the quantity considered? This question is even more critical when
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considering vertical profiles of atmospheric variables, as will be done below, i.e.
measurements made along that direction where statistical homogeneity of the field
variables may not a priori be expected. Furthermore, both in situ (Barat 1981) and
radar (Sato & Woodman 1982) measurements revealed years ago that the depth of
the alternating calm or turbulent layers may be as low as a few tens of metres. We
may hence ask: what is the minimum depth a layer should have to allow statistically
significant estimations of physical parameters? We may show that such a minimum
length does exist, which we term ‘convergence length’. It is estimated by using the
Kolmogorov–Smirnov test. Given a long seemingly homogeneous section of data, we
split it into subsections of increasing depths and compare their CDFs (cumulative
density functions) with the CDF of the whole section. The minimum depth for which
the CDFs are not significantly different is the convergence length. Note that this
length is closely related to the set of lengths introduced by Lumley & Panofsky (1964)
to assure the convergence of given moments. It may be in some sense considered
as an extension since, by dealing with PDFs instead of mean values or variances,
it gives information about all the moments, provided there is no divergence for the
computation of high-order ones. This last point must be carefully verified, particularly
for non-Gaussian PDFs, as shown in this article. We may show that the convergence
length is dependent upon the spectral band considered. For the fluctuations in the
band 2–20 m, we have estimated its value to be around 200 m.

The Kolmogorov–Smirnov (KS) test allows comparison of data series without
making any a priori hypotheses about their distribution laws (Stephens 1970; Durbin
1973). Given two series S1 and S2 with respective amounts of data N1 and N2, the
significance level of the test α

S
is computed using the following formulas, where

N = (N1N2)/(N1 +N2) (Stephens 1970):

α
S

= F{(N1/2 + 0.12 + 0.11/N1/2)×KD}, (A 1)

F(x) = 2

∞∑
k=1

(−1)k−1e−2k2x2

. (A 2)

KD is known as the Kolmogorov distance between the two CDFs CN1
and CN2

:

KD = sup
x

|CN1
(x)− CN2

(x)|. (A 3)

Clearly, α
S

is a decreasing function of KD: the closer the CDFs, the larger is α
S
.

When α
S

becomes larger than α, H0 is considered as true. As we do not wish to
give preference to the equivalence hypothesis, we will hereafter take α = 0.05. It may
be observed that the statistical distributions of the variables considered appear only
through KD; thus the test does not imply any hypothesis about these distributions.
This is usually considered as the main importance of the KS test (Stephens 1970;
Durbin 1973).

Notice that the KS test applies rigorously to series of independent samples of ran-
dom variable. Succesive samples of any hydrodynamical variable are not independent
(they are not white noise). In the special case of band-filtered data, as considered
below, the decorrelation length is dependent upon the bandwith considered. Strictly
independent samples would thus be obtained by undersampling down to the Nyquist
frequency corresponding to the largest wavelength considered. Since stationarity is
assumed (correponding, here, to spatial homogeneity), such an undersampling would
not change the Kolmogorov distance KD, while reducing the number of available
samples within a given series. As a result, the significance level αS (A 1), could be high
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only because there is not enough information to discriminate distinct distributions. In
order to take into account all the available information, we adopt below the opposite
rule: the sampling rate corresponds to the shortest wavelength considered. Thus, the
results of the KS test become more secure, even if applied in non fully rigorous con-
ditions. Indeed, because of the larger amount of data, only situations corresponding
to small KD are now considered non-significant by the test. On the other hand, if
we used undersampled series of strictly independent samples, because of the reduced
amount of data situations with high KD would have been treated as non-significant
by the test. Nevertheless, to be quite cautious, αS should be merely interpreted as a
proximity index between two distributions instead of an exact confidence level. In our
work, the confidence level α of the test is α = 0.05 (Eadie et al. 1971).
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